Graph products with log-concave independence polynomials

نویسندگان

  • Vadim E. Levit
  • Eugen Mandrescu
چکیده

A stable set in a graph G is a set of pairwise non-adjacent vertices. The independence polynomial of G is I(G;x) = s0+s1x+s2x 2 +...+sαx α , where α = α(G) is the cardinality of a maximum stable of G, while sk equals the number of stable sets of size k in G (Gutman and Harary, 1983). Hamidoune, 1990, showed that for every claw-free graph G (i.e., a graph having no induced subgraph isomorphic to K1,3), its independence polynomial is log-concave, that is, (sk) 2 ≥ sk-1 • sk+1 holds for every k∈{1,...,α-1}. Using this result, we investigate log-concavity of I(G;x), where G is a product (Cartesian, Kronecker, normal, edge-join, corona, composition) of some other graphs. Key-Words: stable set, independence polynomial, claw-free, graph products, unimodal, log-concave

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the independence polynomial of an antiregular graph

A graph with at most two vertices of the same degree is called antiregular [25], maximally nonregular [32] or quasiperfect [2]. If sk is the number of independent sets of cardinality k in a graph G, then I(G;x) = s0 + s1x+ ...+ sαx α is the independence polynomial of G [10], where α = α(G) is the size of a maximum independent set. In this paper we derive closed formulae for the independence pol...

متن کامل

2 9 Se p 20 13 Operations of graphs and unimodality of independence polynomials ∗

Given two graphs G and H, assume that C = {C1, C2, . . . , Cq} is a clique cover of G and U is a subset of V (H). We introduce a new graph operation called the clique cover product, denoted by G ⋆ HU , as follows: for each clique Ci ∈ C , add a copy of the graph H and join every vertex of Ci to every vertex of U . We prove that the independence polynomial of G ⋆ HU I(G ⋆ H ;x) = I(H;x)I(G; xI(H...

متن کامل

The unimodality of independence polynomials of some graphs

In this paper we study unimodality problems for the independence polynomial of a graph, including unimodality, log-concavity and reality of zeros. We establish recurrence relations and give factorizations of independence polynomials for certain classes of graphs. As applications we settle some unimodality conjectures and problems. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

Very well-covered graphs with log-concave independence polynomials

If sk equals the number of stable sets of cardinality k in the graph G, then I(G; x) = α(G) ∑ k=0 skx k is the independence polynomial of G (Gutman and Harary, 1983). Alavi, Malde, Schwenk and Erdös (1987) conjectured that I(G; x) is unimodal whenever G is a forest, while Brown, Dilcher and Nowakowski (2000) conjectured that I(G; x) is unimodal for any well-covered graph G. Michael and Traves (...

متن کامل

Log-concavity of the genus polynomials of Ringel Ladders

A Ringel ladder can be formed by a self-bar-amalgamation operation on a symmetric ladder, that is, by joining the root vertices on its end-rungs. The present authors have previously derived criteria under which linear chains of copies of one or more graphs have log-concave genus polynomials. Herein we establish Ringel ladders as the first significant non-linear infinite family of graphs known t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004